
27.12. E1=E2=E3=E4=E5. The electric field is constant everywhere between the plates. This is indicated by the 

electric field vectors, which are all the same length and in the same direction. 

 

27.5. Model: The distances to the observation points are large compared to the size of the dipole, so model 

the field as that of a dipole moment. 

Visualize:  

 

The dipole consists of charges q along the y-axis. The electric field in (a) points down. The field in (b) points 

up. 

Solve: (a) The dipole moment is 

 9 12ˆ ˆ( ,  from – to +) (1.0 10  C) 0.0020 m 2.0 10  C mp qs j j     


 

The electric field at (10 cm, 0 cm), which is at distance r  0.10 m in the plane perpendicular to the electric 

dipole, is 

12
9 2 2

3 3

0

ˆ1 2.0 10  C m ˆ(9.0 10  N m /C ) 18.0  N/C
4 (0.10 m)

p j
E j

r


      


 

The field strength, which is all we’re asked for, is 18.0 N/C. 

(b) The electric field at (0 cm, 10 cm), which is at r  0.10 m along the axis of the dipole, is 

12
9 2 2

3 3

0

ˆ1 2 2(2.0 10  C m) ˆ(9.0 10  N m /C ) 36  N/C
4 (0.10 m)

p j
E j

r


   


 

The field strength at this point is 36 N/C. 

 



27.9. Model: The rods are thin. Assume that the charge lies along a line. 

Visualize:  

 

Because both the rods are positively charged, the electric field from each rod points away from the rod. Because 

the electric fields from the two rods are in opposite directions at P1, P2, and P3, the net field strength at each point 

is the difference of the field strengths from the two rods. 

Solve: Example 27.3 gives the electric field strength in the plane that bisects a charged rod: 

 
rod 22

0

1

4 / 2

Q
E

r r L



 

The electric field from the rod on the right at a distance of 1 cm from the rod is 

 
     

9
9 2 2 5

right 2 2

10 10  C
9.0 10  N m /C 1.765 10  N/C

0.01 m 0.01 m 0.05 m
E


   


 

The electric field from the rod on the right at distances 2 cm and 3 cm from the rod are 50.835 10  N/C  and 
50.514 10  N/C.  The electric fields produced by the rod on the left at the same distances are the same. Point P1 is 

1.0 cm from the rod on the left and is 3.0 cm from the rod on the right. Because the electric fields at P1 have 

opposite directions, the net electric field strengths are 

 At 1.0 cm 5 5 51.765 10  N/C  0.514 10  N/C 1.25 10  N/CE        

 At 2.0 cm 5 50.835 10  N/C  0.835 10  N/C 0 N/CE       

 At 3.0 cm 5 5 51.765 10  N/C  0.514 10  N/C 1.25 10  N/CE        

 



27.14. Model: Model each disk as a uniformly charged disk. When the disk is positively charged, the on-

axis electric field of the disk points away from the disk. 

Visualize:  

 

Solve: (a) The surface charge density on the disk is 

 

9
6 2

22

50 10  C
6.366 10  C/m

0.050 m

Q Q

A R


 




      

From Equation 27.23, the electric field of the left disk at z  0.10 m is 

 
   

6 2

1 12 2 22 2 2
0

1 6.366 10  C/m 1
1 1 38,000 N/C

2 2 8.85 10  C /N m1 1 0.050 m /0.10 m
z

E
R z









   
       

     

 

Hence, 1 (38,000 N/C, right)E 


. Similarly, the electric field of the right disk at 0.10 mz  (to its left) is 

2 (38,000 N/C, left)E 


. The net field at the midpoint between the two disks is 1 2 0 N/CE E E  
  

. 

(b) The electric field of the left disk at z  0.050 m is 

 
   

 
6 2

5 5

1 112 2 2 2

6.366 10  C/m 1
1 1.05 10  N/C 1.05 10  N/C, right

2 8.85 10  C /N m 1 0.050 m /0.10 m
z

E E




  
       

   


 

Similarly, the electric field of the right disk at z  0.15 m (to its left) is  4

2 1.85 10  N/C, left .E  


 The net field 

is thus 

 4

1 2 8.7 10  N/C, rightE E E   
  

 

The field strength is 
48.7 10  N/C.  

 

27.19. Model: The electric field in a region of space between the plates of a parallel-plate capacitor is 

uniform. 

Solve: The electric field inside a capacitor is 
0 .E Q A  Thus, the charge needed to produce a field of strength E is 

     
212 2 2 6

0 8.85 10  C /N m 0.020 m 3.0 10  N/C  33.4 nCQ AE       
 

 

The number of electrons transferred from one plate to the other is 

9
11

19

33.4 10  C
2.1 10

1.60 10  C






 


 

 



27.24. Model: The infinite negatively charged plane produces a uniform electric field that is directed toward 

the plane. 

Visualize:  

 

Solve: From the kinematic equation of motion 
2 2

1 00 2  and ,v v a x F qE ma       

2 2

0 0

2 2

qE v mv
a x

m x qE

 
   


 

Furthermore, the electric field of a plane of charge with surface charge density  is 
02 .E    Thus, 

    
  

2
27 6 12 2 22

0 0

19 6 2

1.67 10  kg 2.0 10  m/s 8.85 10  C /N m
 0.185 m

1.60 10  C 2.0 10  C/m

mv
x

q





 

 

   
   

  
 

27.27. Model: The size of a molecule is  0.1 nm. The proton is 2.0 nm away, so r >> s and we can use 

Equation 27.12 for the electric field in the plane that bisects the dipole. 

Visualize:  

 

Solve: You can see from the diagram that dipole on protonF


 is opposite to the direction of .p


 The magnitude of the 

dipole field at the position of the proton is 

30
9 2 2 5

dipole 3 9 3

0

1 5.0 10  C m
(9.0 10  N m /C ) 5.624 10  N/C

4 (2.0 10  m)

p
E

r






    


 

The magnitude of dipole on protonF


 is 

19 5 13

dipole on proton dipole (1.60 10  C)(5.624 10  N/C) 9.0 10  NF eE         

Including the direction, the force is dipole on protonF


  (9.0 10
–13

 N, direction opposite p


). 

 



27.32. Model: The electric field is that of two charges q and 2q located at x  a. 

Visualize:  

 

Solve: (a) At point 1, the electric field from q is 

   
2 2 2

0 0

1 1

4 4 52
q

q q
E

aa a 



 


 

qE


 points toward q and makes an angle  1

1 tan 2 63.43a a     below the x-axis, hence 

   1 12 2 2
0 0 0

1 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆcos sin  2
4 5 4 5 45 5 5 5

q

q q q
E i j i j i j

a a a
 

  


      
               

       


 

The electric field from the 2q is 

 
2 2 22

0 0

1 2 1 2

4 4 52
q

q q
E

aa a 
  


 

2qE


 points away from 2q and makes an angle  1

1 tan 2 63.43a a     above the x-axis. So, 

   2 2 22 2
0 0

1 2 1ˆ ˆ ˆ ˆcos sin 2 4
4 5 4 5 5

q

q q
E i j i j

a a
 

 


  
        

   


 

Adding these two vectors, 

 1 net 2 2
0

1 ˆ ˆ3 2
4 5 5

q q

q
E E E i j

a
 

 
     

 

  
 

At point 2, the electric field from q points toward q, so 

2

0

1 ˆ
4

q

q
E i

a


 
  

 


 

The electric field from 2q points away from 2q, so 

2 2

0

1 2 ˆ
4 9

q

q
E i

a


 
   

 


 

Adding these two vectors, 



27.43. Model: The electric field is that of a line charge of length L. 

Visualize: Please refer to Figure P27.43. Let the bottom end of the rod be the origin of the coordinate system. 

Divide the rod into many small segments of charge q and length y. Segment i creates a small electric field at 

the point P that makes an angle   with the horizontal. The field has both x and y components, but Ez  0 N/C. 

The distance to segment i from point P is  
1 2

2 2 .x y  

Solve: The electric field created by segment i at point P is 

 
 2 2

0

ˆ ˆcos sin  
4

i

q
E i j

x y
 




 





 2 2 2 2 2 2
0

ˆ ˆ
4

q x y
i j

x y x y x y

  
      

 

The net field is the sum of all the ,iE


 which gives .i
i

E E
 

 q is not a coordinate, so before converting the 

sum to an integral we must relate charge q to length y. This is done through the linear charge density   

Q/L, from which we have the relationship 

Q
q y y

L
        

With this charge, the sum becomes 

   
3 / 2 3 / 2

2 2 2 2
0

/ ˆ ˆ
4 i

Q L x y y y
E i j

x y x y

    
  

    




 

Now we let y  dy and replace the sum by an integral from 0 my   to y L  . Thus, 

 

   
 

3/ 2 3/ 2 2 2 2 2 22 2 2 2
0 00 0

0 0

/ / 1ˆ ˆ ˆ ˆ
4 4

L LL LQ L Q Lxdy y dy y
E i j x i j

x x y x yx y x y 

         
                      

 


 

 
2 2 2 2

0 0

1 1ˆ ˆ  1
4 4

Q Q x
i j

Lxx x L x L 

  
    

   
 

 



27.47. Model: Assume that the quarter-circle plastic rod is thin and that the charge lies along the quarter-

circle of radius R. 

Visualize:  

 

The origin of the coordinate system is at the center of the circle. Divide the rod into many small segments of 

charge q and arc length s. 

Solve: (a) Segment i creates a small electric field 
iE


 at the origin with two components: 

  cosi i ix
E E        sini i iy

E E   

Note that the angle  i depends on the location of the segment i. Now all segments are at distance ri  R from the 

origin, so 

2 2

0 0

1 1

4 4
i

i

q q
E

r R 

 
   

The linear charge density of the rod is   Q/L, where L is the rod’s length (L  quarter-circumference  R/2). 

This allows us to relate charge q to the arc length s through 

2Q Q
q s s s

L R




   
         

   
 

Using s  R , the components of the electric field at the origin are 

 
2 2 2

0 0 0

1 1 1 2 1 2
cos cos cos

4 4 4
i i i ix

q Q Q
E R

R R R R
    

    

    
       

   
 

 
2 2 2

0 0 0

1 1 1 2 1 2
sin sin sin

4 4 4
i i i iy

q Q Q
E R

R R R R
    

    

    
       

   
 

(b) The x- and y-components of the electric field for the entire rod are the integrals of the expressions in part (a) 

from  

   0 rad to    /2. We have 

/ 2 / 2

2 20 0
0 0

1 2 1 2
cos                   sin

4 4
x y

Q Q
E d E d

R R

 

   
   

   
    

   
   

(c) The integrals are 

 
/ 2 / 2

00
sin cos cos cos0 1

2
d

  
  

 
       

 
      

/ 2 / 2

00
cos sin sin sin 0 1

2
d

  
        

The electric field is 

 2

0

1 2 ˆ ˆ
4

Q
E i j

R 
 


 

 



27.53. Model: Assume that the electric field inside the capacitor is constant, so constant-acceleration 

kinematic equations apply. 

Visualize: Please refer to Figure P27.53. 

Solve: (a) The force on the electron inside the capacitor is 

qE
F ma qE a

m
   


  

 

Because E


 is directed upward (from the positive plate to the negative plate) and 191.60 10  Cq    , the 

acceleration of the electron is downward. We can therefore write the above equation as simply ay  qE/m. To 

determine E, we must first find ay. From kinematics, 

     
2

1 0 0 1 0 1 0 0 1 0

1
0.040 m 0 m cos45 0 m

2
x xx x v t t a t t v t t            

 
 

 
8

1 0 6

0.040 m
1.1314 10  s

5.0 10  m/s cos45
t t     

 
 

Using the kinematic equations for the motion in the y-direction, 

1 0 1 0
1 0 00 m/s sin45

2 2
y y y

t t qE t t
v v a v

m

     
        

    
 

 

  
  

31 6

30

19 8
1 0

2 9.1 10  kg 5.0 10  m/s sin 452 m sin 45
3550 N/C 3.6 10  N/C

1.60 10  C 1.1314 10  s

v
E

q t t



 

  
       

   
 

(b) To determine the separation between the two plates, we note that y0  0 m and 
6

0 (5.0 10  m/s)sin 45 ,yv     but at 

y  y1, the electron’s highest point, v1y  0 m/s. From kinematics, 

   2 2 2 2 2 2

1 0 1 0 0 1 02 0 m /s sin 45 2y y y yv v a y y v a y y        

 
2 2 2

0 0
1 0

sin 45

2 4y y

v v
y y

a a


       

From part (a), 

  19

14 2

31

1.60 10  C 3550 N/C
6.242 10  m/s

9.1 10  kg
y

qE
a

m





 
    


 

 
 

2
6

1 0 14 2

5.0 10  m/s
0.010 m 1.0 cm

4 6.242 10  m/s
y y


     

 
 

This is the height of the electron’s trajectory, so the minimum spacing is 1.0 cm. 

 



27.58. Model: The electron orbiting the proton experiences a force given by Coulomb’s law. 

Visualize:  

 

Solve: The force that causes the circular motion is 

 2 2 22
ep e e

2

0

41

4

m r fq q m v
F

r r r




    

where we used 2 2 .v r T rf    The frequency is 

  

  

2
9 2 2 19

p e 15

32 3 2 31 11
0 e

9.0 10  N m /C 1.60 10  C1
6.56 10  Hz

4 4 4 9.11 10  kg 5.3 10  m

q q
f

m r  



 

  
    

  
 

 

27.3. E3 = E4 > E2 > E1. The electric field strength is larger in the region where the field lines are closer 

together (E3 and E4) and smaller where the field lines are farther apart. 

 

27.8. (a) 
 
 

2

2

/
, so 3.163 10

3.163 /

ffi i
f

i i f

Q ANA A
A

N Q A A
      

(b) 
02

f

f f

N
F eE e

E
  and 

0

,
2

i
i i

N
F eE e

E
   so 10.

f f

i i

F N

F N
   

 

27.12. E1=E2=E3=E4=E5. The electric field is constant everywhere between the plates. This is indicated by the 

electric field vectors, which are all the same length and in the same direction. 

 



27.5. Model: The distances to the observation points are large compared to the size of the dipole, so model 

the field as that of a dipole moment. 

Visualize:  

 

The dipole consists of charges q along the y-axis. The electric field in (a) points down. The field in (b) points 

up. 

Solve: (a) The dipole moment is 

 9 12ˆ ˆ( ,  from – to +) (1.0 10  C) 0.0020 m 2.0 10  C mp qs j j     


 

The electric field at (10 cm, 0 cm), which is at distance r  0.10 m in the plane perpendicular to the electric 

dipole, is 

12
9 2 2

3 3

0

ˆ1 2.0 10  C m ˆ(9.0 10  N m /C ) 18.0  N/C
4 (0.10 m)

p j
E j

r


      


 

The field strength, which is all we’re asked for, is 18.0 N/C. 

(b) The electric field at (0 cm, 10 cm), which is at r  0.10 m along the axis of the dipole, is 

12
9 2 2

3 3

0

ˆ1 2 2(2.0 10  C m) ˆ(9.0 10  N m /C ) 36  N/C
4 (0.10 m)

p j
E j

r


   


 

The field strength at this point is 36 N/C. 

 



27.9. Model: The rods are thin. Assume that the charge lies along a line. 

Visualize:  

 

Because both the rods are positively charged, the electric field from each rod points away from the rod. Because 

the electric fields from the two rods are in opposite directions at P1, P2, and P3, the net field strength at each point 

is the difference of the field strengths from the two rods. 

Solve: Example 27.3 gives the electric field strength in the plane that bisects a charged rod: 

 
rod 22

0

1

4 / 2

Q
E

r r L



 

The electric field from the rod on the right at a distance of 1 cm from the rod is 

 
     

9
9 2 2 5

right 2 2

10 10  C
9.0 10  N m /C 1.765 10  N/C

0.01 m 0.01 m 0.05 m
E


   


 

The electric field from the rod on the right at distances 2 cm and 3 cm from the rod are 50.835 10  N/C  and 
50.514 10  N/C.  The electric fields produced by the rod on the left at the same distances are the same. Point P1 is 

1.0 cm from the rod on the left and is 3.0 cm from the rod on the right. Because the electric fields at P1 have 

opposite directions, the net electric field strengths are 

 At 1.0 cm 5 5 51.765 10  N/C  0.514 10  N/C 1.25 10  N/CE        

 At 2.0 cm 5 50.835 10  N/C  0.835 10  N/C 0 N/CE       

 At 3.0 cm 5 5 51.765 10  N/C  0.514 10  N/C 1.25 10  N/CE        

 



27.14. Model: Model each disk as a uniformly charged disk. When the disk is positively charged, the on-

axis electric field of the disk points away from the disk. 

Visualize:  

 

Solve: (a) The surface charge density on the disk is 

 

9
6 2

22

50 10  C
6.366 10  C/m

0.050 m

Q Q

A R


 




      

From Equation 27.23, the electric field of the left disk at z  0.10 m is 

 
   

6 2

1 12 2 22 2 2
0

1 6.366 10  C/m 1
1 1 38,000 N/C

2 2 8.85 10  C /N m1 1 0.050 m /0.10 m
z

E
R z









   
       

     

 

Hence, 1 (38,000 N/C, right)E 


. Similarly, the electric field of the right disk at 0.10 mz  (to its left) is 

2 (38,000 N/C, left)E 


. The net field at the midpoint between the two disks is 1 2 0 N/CE E E  
  

. 

(b) The electric field of the left disk at z  0.050 m is 

 
   

 
6 2

5 5

1 112 2 2 2

6.366 10  C/m 1
1 1.05 10  N/C 1.05 10  N/C, right

2 8.85 10  C /N m 1 0.050 m /0.10 m
z

E E




  
       

   


 

Similarly, the electric field of the right disk at z  0.15 m (to its left) is  4

2 1.85 10  N/C, left .E  


 The net field 

is thus 

 4

1 2 8.7 10  N/C, rightE E E   
  

 

The field strength is 
48.7 10  N/C.  

 

27.19. Model: The electric field in a region of space between the plates of a parallel-plate capacitor is 

uniform. 

Solve: The electric field inside a capacitor is 
0 .E Q A  Thus, the charge needed to produce a field of strength E is 

     
212 2 2 6

0 8.85 10  C /N m 0.020 m 3.0 10  N/C  33.4 nCQ AE       
 

 

The number of electrons transferred from one plate to the other is 

9
11

19

33.4 10  C
2.1 10

1.60 10  C






 


 

 



27.24. Model: The infinite negatively charged plane produces a uniform electric field that is directed toward 

the plane. 

Visualize:  

 

Solve: From the kinematic equation of motion 
2 2

1 00 2  and ,v v a x F qE ma       

2 2

0 0

2 2

qE v mv
a x

m x qE

 
   


 

Furthermore, the electric field of a plane of charge with surface charge density  is 
02 .E    Thus, 

    
  

2
27 6 12 2 22

0 0

19 6 2

1.67 10  kg 2.0 10  m/s 8.85 10  C /N m
 0.185 m

1.60 10  C 2.0 10  C/m

mv
x

q





 

 

   
   

  
 

27.27. Model: The size of a molecule is  0.1 nm. The proton is 2.0 nm away, so r >> s and we can use 

Equation 27.12 for the electric field in the plane that bisects the dipole. 

Visualize:  

 

Solve: You can see from the diagram that dipole on protonF


 is opposite to the direction of .p


 The magnitude of the 

dipole field at the position of the proton is 

30
9 2 2 5

dipole 3 9 3

0

1 5.0 10  C m
(9.0 10  N m /C ) 5.624 10  N/C

4 (2.0 10  m)

p
E

r






    


 

The magnitude of dipole on protonF


 is 

19 5 13

dipole on proton dipole (1.60 10  C)(5.624 10  N/C) 9.0 10  NF eE         

Including the direction, the force is dipole on protonF


  (9.0 10
–13

 N, direction opposite p


). 

 



27.32. Model: The electric field is that of two charges q and 2q located at x  a. 

Visualize:  

 

Solve: (a) At point 1, the electric field from q is 

   
2 2 2

0 0

1 1

4 4 52
q

q q
E

aa a 



 


 

qE


 points toward q and makes an angle  1

1 tan 2 63.43a a     below the x-axis, hence 

   1 12 2 2
0 0 0

1 1 1 2 1ˆ ˆ ˆ ˆ ˆ ˆcos sin  2
4 5 4 5 45 5 5 5

q

q q q
E i j i j i j

a a a
 

  


      
               

       


 

The electric field from the 2q is 

 
2 2 22

0 0

1 2 1 2

4 4 52
q

q q
E

aa a 
  


 

2qE


 points away from 2q and makes an angle  1

1 tan 2 63.43a a     above the x-axis. So, 

   2 2 22 2
0 0

1 2 1ˆ ˆ ˆ ˆcos sin 2 4
4 5 4 5 5

q

q q
E i j i j

a a
 

 


  
        

   


 

Adding these two vectors, 

 1 net 2 2
0

1 ˆ ˆ3 2
4 5 5

q q

q
E E E i j

a
 

 
     

 

  
 

At point 2, the electric field from q points toward q, so 

2

0

1 ˆ
4

q

q
E i

a


 
  

 


 

The electric field from 2q points away from 2q, so 

2 2

0

1 2 ˆ
4 9

q

q
E i

a


 
   

 


 

Adding these two vectors, 



27.43. Model: The electric field is that of a line charge of length L. 

Visualize: Please refer to Figure P27.43. Let the bottom end of the rod be the origin of the coordinate system. 

Divide the rod into many small segments of charge q and length y. Segment i creates a small electric field at 

the point P that makes an angle   with the horizontal. The field has both x and y components, but Ez  0 N/C. 

The distance to segment i from point P is  
1 2

2 2 .x y  

Solve: The electric field created by segment i at point P is 

 
 2 2

0

ˆ ˆcos sin  
4

i

q
E i j

x y
 




 





 2 2 2 2 2 2
0

ˆ ˆ
4

q x y
i j

x y x y x y

  
      

 

The net field is the sum of all the ,iE


 which gives .i
i

E E
 

 q is not a coordinate, so before converting the 

sum to an integral we must relate charge q to length y. This is done through the linear charge density   

Q/L, from which we have the relationship 

Q
q y y

L
        

With this charge, the sum becomes 

   
3 / 2 3 / 2

2 2 2 2
0

/ ˆ ˆ
4 i

Q L x y y y
E i j

x y x y

    
  

    




 

Now we let y  dy and replace the sum by an integral from 0 my   to y L  . Thus, 

 

   
 

3/ 2 3/ 2 2 2 2 2 22 2 2 2
0 00 0

0 0

/ / 1ˆ ˆ ˆ ˆ
4 4

L LL LQ L Q Lxdy y dy y
E i j x i j

x x y x yx y x y 

         
                      

 


 

 
2 2 2 2

0 0

1 1ˆ ˆ  1
4 4

Q Q x
i j

Lxx x L x L 

  
    

   
 

 



27.47. Model: Assume that the quarter-circle plastic rod is thin and that the charge lies along the quarter-

circle of radius R. 

Visualize:  

 

The origin of the coordinate system is at the center of the circle. Divide the rod into many small segments of 

charge q and arc length s. 

Solve: (a) Segment i creates a small electric field 
iE


 at the origin with two components: 

  cosi i ix
E E        sini i iy

E E   

Note that the angle  i depends on the location of the segment i. Now all segments are at distance ri  R from the 

origin, so 

2 2

0 0

1 1

4 4
i

i

q q
E

r R 

 
   

The linear charge density of the rod is   Q/L, where L is the rod’s length (L  quarter-circumference  R/2). 

This allows us to relate charge q to the arc length s through 

2Q Q
q s s s

L R




   
         

   
 

Using s  R , the components of the electric field at the origin are 

 
2 2 2

0 0 0

1 1 1 2 1 2
cos cos cos

4 4 4
i i i ix

q Q Q
E R

R R R R
    

    

    
       

   
 

 
2 2 2

0 0 0

1 1 1 2 1 2
sin sin sin

4 4 4
i i i iy

q Q Q
E R

R R R R
    

    

    
       

   
 

(b) The x- and y-components of the electric field for the entire rod are the integrals of the expressions in part (a) 

from  

   0 rad to    /2. We have 

/ 2 / 2

2 20 0
0 0

1 2 1 2
cos                   sin

4 4
x y

Q Q
E d E d

R R

 

   
   

   
    

   
   

(c) The integrals are 

 
/ 2 / 2

00
sin cos cos cos0 1

2
d

  
  

 
       

 
      

/ 2 / 2

00
cos sin sin sin 0 1

2
d

  
        

The electric field is 

 2

0

1 2 ˆ ˆ
4

Q
E i j

R 
 


 

 



27.53. Model: Assume that the electric field inside the capacitor is constant, so constant-acceleration 

kinematic equations apply. 

Visualize: Please refer to Figure P27.53. 

Solve: (a) The force on the electron inside the capacitor is 

qE
F ma qE a

m
   


  

 

Because E


 is directed upward (from the positive plate to the negative plate) and 191.60 10  Cq    , the 

acceleration of the electron is downward. We can therefore write the above equation as simply ay  qE/m. To 

determine E, we must first find ay. From kinematics, 

     
2

1 0 0 1 0 1 0 0 1 0

1
0.040 m 0 m cos45 0 m

2
x xx x v t t a t t v t t            

 
 

 
8

1 0 6

0.040 m
1.1314 10  s

5.0 10  m/s cos45
t t     

 
 

Using the kinematic equations for the motion in the y-direction, 

1 0 1 0
1 0 00 m/s sin45

2 2
y y y

t t qE t t
v v a v

m

     
        

    
 

 

  
  

31 6

30

19 8
1 0

2 9.1 10  kg 5.0 10  m/s sin 452 m sin 45
3550 N/C 3.6 10  N/C

1.60 10  C 1.1314 10  s

v
E

q t t



 

  
       

   
 

(b) To determine the separation between the two plates, we note that y0  0 m and 
6

0 (5.0 10  m/s)sin 45 ,yv     but at 

y  y1, the electron’s highest point, v1y  0 m/s. From kinematics, 

   2 2 2 2 2 2

1 0 1 0 0 1 02 0 m /s sin 45 2y y y yv v a y y v a y y        

 
2 2 2

0 0
1 0

sin 45

2 4y y

v v
y y

a a


       

From part (a), 

  19

14 2

31

1.60 10  C 3550 N/C
6.242 10  m/s

9.1 10  kg
y

qE
a

m





 
    


 

 
 

2
6

1 0 14 2

5.0 10  m/s
0.010 m 1.0 cm

4 6.242 10  m/s
y y


     

 
 

This is the height of the electron’s trajectory, so the minimum spacing is 1.0 cm. 

 



27.58. Model: The electron orbiting the proton experiences a force given by Coulomb’s law. 

Visualize:  

 

Solve: The force that causes the circular motion is 

 2 2 22
ep e e

2

0

41

4

m r fq q m v
F

r r r




    

where we used 2 2 .v r T rf    The frequency is 

  

  

2
9 2 2 19

p e 15

32 3 2 31 11
0 e

9.0 10  N m /C 1.60 10  C1
6.56 10  Hz

4 4 4 9.11 10  kg 5.3 10  m

q q
f

m r  



 

  
    

  
 

 

27.3. E3 = E4 > E2 > E1. The electric field strength is larger in the region where the field lines are closer 

together (E3 and E4) and smaller where the field lines are farther apart. 

 

27.8. (a) 
 
 

2

2

/
, so 3.163 10

3.163 /

ffi i
f

i i f

Q ANA A
A

N Q A A
      

(b) 
02

f

f f

N
F eE e

E
  and 

0

,
2

i
i i

N
F eE e

E
   so 10.

f f

i i

F N

F N
   

  


